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Abstract

In this study, we examine all the second order linear recurrence relations over dual octonions.
Hence, we generalize Fibonacci-like relations over dual octonions. For this purpose we use
the well-known Horadam sequence and obtain some fundamental and new identities involving
elements of this generalized sequence.
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1 Introduction

A dual octonion can be defined as K̂ = (k, l) = k + lε where k, l ∈ O. Let D be the set of dual
octonions;

D = {K̂|K̂ = (k, l) = k + lε; k, l ∈ O with ε2 = 0}. (1.1)

The addition on the set D is given by

K̂ + L̂ = (k, l) + (m,n) = (k +m, l + n) = (k +m) + (l + n)ε. (1.2)

It should be noted that there are different multiplication tables for octonions which can be obtained
by Cayley-Dickson process [4, 5]. We define the multiplication of the bases elements as eiej = ek.
The set of indices {i, j, k} being one of {1, 2, 3}, {1, 4, 5}, {1, 7, 6}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7} and
{3, 6, 5}. Note that if a different multiplication is chosen, then one should make all calculations
accordingly (see, [1, 4]). The multiplication of two dual octonions can be defined as

K̂L̂ = (km, kn+ lm). (1.3)

The conjugate of a dual octonion K̂ is going to be denoted by K̂ and this will be written as follows.

K̂ = (k, l) = k + lε. (1.4)

Norm is defined by the help of conjugate as follows;

N(K̂) = (k, l)(k, l) = (k, l)(k, l) = (kk, kl + lk). (1.5)

We also note that the definition of a dual unit ε causes the norm to be degenerate which means
that the norm can be equal to zero for some non zero dual octonions. To explain this situation let
us calculate the norm for K̂ = 1ε;

N(K̂) = 1ε1ε = 1ε2 = 0. (1.6)
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For detailed knowledge, we refer the interested readers to [1] and [3].

The rest of this paper is organized as follows. Section 2 reviews basic properties of Horadam
sequence which will be used in the following sections. In Section 3, the dual Horadam octonions
are introduced and investigated. Moreover, some important identities and equalities involving
these octonions are obtained. And finally, in Section 4, the generalization is made in this study is
summarized.

2 The Horadam sequence

In this section, we focus on the second order recursive relations over the dual octonions. There are
some papers about this subject in literature. For example, in [6], the author studied dual Fibonacci
octonions. In [2], the authors investigated the dual k-Pell octonions. Our aim is to generalize all
second order recursive relations over the dual octonions. To achieve this goal, we shall first give
some fundamental properties of the Horadam sequence. The Horadam sequence is a particular type
of linear recurrence sequences. This sequence generalizes all of the well-known sequences such as
Fibonacci, Lucas, Pell, Pell-Lucas sequences, etc. Some studies containing the Horadam sequence
can be seen in the references [8–10].

Let us start with the definition of Horadam sequence. In [9], Horadam gave the following sequence
definition.

{wn(a, b; p, q)}; n ≥ 2 (2.1)

where
wn = pwn−1 + qwn−2; w0 = a,w1 = b (2.2)

If one writes a = 0, b = p = q = 1 in the equation (2.2), then the classical Fibonacci sequence is
obtained. Also, the other types of sequences can be obtained such as Lucas, Pell, Pell-Lucas. Now,
we present some formulas which will be used very frequently. It is known one of the fundamental
identity related to the recurrence relations is the Binet formula, and it can be calculated by using
the characteristic equation. For the Horadam sequence, the roots of the characteristic equation are

α =
p+

√
p2 + 4q

2
, β =

p−
√
p2 + 4q

2
. (2.3)

Using these roots and the recurrence relation the Binet formula can be given as follows;

wn =
Aαn −Bβn

α− β
, A = b− aβ and B = b− aα. (2.4)

We will examine Binet formula, Cassini identity, d’Ocagne’s identity and other equalities for the
dual Horadam octonions. It is worth noting that there are some studies related to the second
order recurrence relations over R,C,H and O in literature. One of the earliest studies on this topic
belongs to Horadam where it was given a generalization of the second order recurrence relations
on R and C. In [12], Swamy defined the generalized Fibonacci quaternions and then, in [7], we
defined quaternions with coefficients from Horadam sequence. Furthermore, in [11], we described
and studied the Horadam octonions. And for these octonions, we obtained the Binet formula and
some important identities.
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3 Dual Horadam octonions

In this section, we define the dual Horadam octonions and give the identities and equalities men-
tioned in Section 2. Furthermore, we show that the identities involving dual Horadam octonions
can be reduced to the identities which are obtained by using different initial values in [6, 13].

Now, let us define a new type of octonions which we call as dual Horadam octonions. Note that
these octonions are dual octonions which have coefficients from Horadam sequence. In the rest of

the study we will use the notation ÔGn to demonstrate the n-th dual Horadam octonion. Let us
define the n-th dual Horadam octonion as follows.

ÔGn = (OGn,OGn+1) = OGn + OGn+1ε (3.1)

where
OGn = wne0 + wn+1e1 + · · ·+ wn+7e7. (3.2)

Firstly, we give some fundamental properties of these dual octonions. For one of the main features
of the dual Horadam octonions we give Binet formula in the following theorem.

Theorem 3.1. For n ≥ 1, we get

ÔGn =
Aααn(1 + αε)−Bββn(1 + βε)

α− β
, (3.3)

where α = 1e0 + αe1 + α2e2 + · · ·+ α7e7 and β = 1e0 + βe1 + β2e2 + · · ·+ β7e7.

Proof. In [11], the Binet formula for Horadam octonions is given as follows.

OGn =
Aααn −Bββn

α− β
(3.4)

where
α = 1e0 + αe1 + α2e2 + · · ·+ α7e7 and β = 1e0 + βe1 + β2e2 + · · ·+ β7e7. (3.5)

For the dual Horadam octonions Binet formula can be obtained in a similar way. Using the definition
of dual Horadam octonions and its characteristic equation

ÔGn =
Aααn(1 + αε)−Bββn(1 + βε)

α− β

is obtained which is desired. Where

A = b− aβ, B = b− aα

and

α =
p+

√
p2 + 4q

2
, β =

p−
√
p2 + 4q

2
.

q.e.d.
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One can realize that the equation (3.3) generalizes the Binet formulas which are obtained in
[6, 13]. That is, for α, β and A = B = 1, the formula (3.3) is reduced to following equation.

ααn(1 + αε)− ββn(1 + βε)

α− β
.

In the next theorem, we give the generating function for dual Horadam octonions.

Theorem 3.2. The generating function for the dual Horadam octonions is

ÔG0 + (ÔG1 − pÔG0)t

1− pt− qt2
. (3.6)

Proof. To prove this claim, firstly we write g(t) as

g(t) = ÔG0t
0 + ÔG1t+ · · ·+ ÔGnt

n + . . . . (3.7)

Secondly, we need to calculate ptg(t) and qt2g(t) in the following equations;

ptg(t) =

∞∑
n=0

pÔGnt
n+1 and qt2g(t) =

∞∑
n=0

qÔGnt
n+2. (3.8)

Hence, after straightforward calculations, we obtain

g(t) =
OG0 + OG1ε+ (OG1 + OG2ε− p(OG0 + OG1ε))t

1− pt− qt2
, (3.9)

which is the generating function for the dual Horadam octonions. q.e.d.

We want to note that the formula (3.6) generalizes the next formula which is given in [6].

Ô0 + (Ô1 − Ô0)t

1− t− t2
. (3.10)

For the dual Fibonacci and dual Lucas octonions, Cassini identities are studied in [6, 13]. In the
following theorem, we give the Cassini formula for dual Horadam octonions.

Theorem 3.3. For dual Horadam octonions, we have

ÔGn−1ÔGn+1 − ÔG2
n =

AB(−q)n−1αβ[p+ (p2 + q)ε]√
p2 + 4q

. (3.11)

Proof. For the proof equation (3.11) if we use the Binet formula, then we have(Aααn−1(1 + αε)−Bββn−1(1 + βε)

α− β

)(Aααn+1(1 + αε)−Bββn+1(1 + βε)

α− β

)
−
(Aααn(1 + αε)−Bββn(1 + βε)

α− β

)2
.
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After making necessary calculations

AB(−q)n−1αβ[(α2 − β2) + (α3 − β3)ε]

(α− β)2

is obtained which can be rearranged as,

(b2 − abp− qa2)(−q)n−1αβ[p+ (p2 + q)ε]√
p2 + 4q

.

q.e.d.

It should be noted that, in equation (3.11), if we take the necessary initial values then we have
a formula which is equivalent to the Cassini formula is given in the reference [6]. Also, according
to α and β values for real quaternions, we have Cassini identity stated in [7].

Now, we give d’Ocagne’s identity for dual Horadam octonions.

Theorem 3.4. For the dual Horadam octonions, we have

ÔGm+1ÔGn − ÔGmÔGn+1 =
ABαβ(αnβm − αmβn)[1 + pε]√

p2 − 4q
. (3.12)

Proof. We use the Binet formula in (3.12). Then the right hand side is follows;

=
(Aααm+1(1 + αε)−Bββm+1(1 + βε)

α− β

)(Aααn(1 + αε)−Bββn(1 + βε)

α− β

)

−
(Aααm(1 + αε)−Bββm(1 + βε)

α− β

)(Aααn+1(1 + αε)−Bββn+1(1 + βε)

α− β

)
.

After needed calculations,

ÔGm+1ÔGn − ÔGmÔGn+1 =
ABαβ(αnβm − αmβn)[1 + pε]√

p2 − 4q

is obtained where AB = b2 − abp− qa2. q.e.d.

Note that if we focus on non-dual part of the equation (3.12) we get d’Ocagne’s identity for real
Horadam octonions.

Remark 3.5. For real Horadam octonions, d’Ocagne’s identity is as follows;

OGm+1OGn −OGmOGn+1 =
ABαβ(αnβm − αmβn)

α− β
.

In the following theorem, we give Vajda identity for dual Horadam octonions.
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Theorem 3.6. For the dual Horadam octonions, we have

ÔGn+mÔGn+k − ÔGn
̂OGn+m+k =

ABαβ(−q)nβk(βk − αm) + (βm+1 + αβm − αm+1 − αmβ)ε

(α− β)2
+

ABβα(−q)nαk(αk − βm) + (αm+1 + αmβ − βm+1 − βmα)ε

(α− β)2
. (3.13)

Proof. We use the equation (3.3) and rewrite the equation (3.13) explicitly as follows

=
(Aααn+m(1 + αε)−Bββn+m(1 + βε)

α− β

)(Aααn+k(1 + αε)−Bββn+k(1 + βε)

α− β

)
−
(Aααn(1 + αε)−Bββn(1 + βε)

α− β

)(Aααn+m+k(1 + αε)−Bββn+m+k(1 + βε)

α− β

)
.

After needed calculations Vajda identity is

ÔGn+mÔGn+k − ÔGn
̂OGn+m+k =

ABαβαnβn+k(βk − αm) + (βm+1 + αβm − αm+1 − αmβ)ε

(α− β)2
+

ABβααn+kβn(αk − βm) + (αm+1 + αmβ − βm+1 − βmα)ε

(α− β)2

where AB = b2 − abp− qa2. q.e.d.

For the real Horadam octonions we give following remark.

Remark 3.7. For the real Horadam octonions the Vajda identity is

OGn+mOGn+k −OGnOGn+m+k =
ABαβ(−q)n(β2k + βn+m − α2k − αm+k)

(α− β)2
. (3.14)

Theorem 3.8. For dual Horadam octonions, we have the following relations:

i) ÔGnÔGn+3 − ÔGn+1ÔGn+2 = −ABαβ(−q)n[p+ (p2 + 2q)ε]. (3.15)

ii) ÔG2
n ± ÔG2

n+1 =

A2α2α2n[(1± α2) + 2(α± α3)ε] +B2β2β2n[(1± β2) + 2(β ± β3)ε]. (3.16)

Proof. Let us prove the equation (3.16) with plus sign which is

ÔG2
n + ÔG2

n+1 = A2α2α2n[(1 + α2) + 2(α+ α3)ε] +B2β2β2n[(1 + β2) + 2(β + β3)ε].

In order to prove we use the equation (3.3) in the above equation as(Aααn(1 + αε)−Bββn(1 + βε)

α− β

)2
+
(Aααn+1(1 + αε)−Bββn+1(1 + βε)

α− β

)2
.
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After using properties of α and β we get

A2α2α2n[(1 + α2) + 2(α+ α3)ε] +B2β2β2n[(1 + β2) + 2(β + β3)ε]

which is desired. q.e.d.

In analogy with the Theorem 3 we state following remark.

Remark 3.9. For real Horadam octonions we have the following identities

i) OGnOGn+3 −OGn+1OGn+2 = −ABαβ(−q)np. (3.17)

ii) OG2
n ±OG2

n+1 = A2α2α2n(1± α2) +B2β2β2n(1± β2). (3.18)

In the following theorem, we give a formula which gives the sum of dual Horadam octonions

Theorem 3.10. The summation formula for the dual Horadam octonions is

n∑
i=0

ÔGi =

n∑
i=0

OGi +

n+1∑
i=1

OGiε = (d1, d2), (3.19)

where the real and dual parts of equation (3.19) are as follows:

d1 =

n∑
i=0

OGi =
1

α− β
(Bββn+1

1− β
− Aααn+1

1− α
)

+K (3.20)

and

d2 =

n+1∑
i=1

OGi =
1

α− β
(Bββn+2

1− β
− Aααn+2

1− α
)
−OG0 +K (3.21)

respectively. The value K is

K =
Aα(1− β)−Bβ(1− α)

(α− β)(1− α)(1− β)
. (3.22)

Proof. For the summation formula of ÔGn we calculate the values d1 and d2 separately. To find
d1 we can use Binet formula and definition of geometric series as follows:

d1 =

n∑
i=0

OGi =
Aααn −Bββn

α− β
=

Aα

α− β

n∑
i=0

αn −
Bβ

α− β

n∑
i=0

βn.

=
Aα

α− β

n∑
i=0

1− αn+1

1− α
−

Bβ

α− β

n∑
i=0

1− βn+1

1− β
.

Upon making the necessary calculations, we get the explicit form of d1 as

n∑
i=0

OGi =
1

α− β
(Bββn+1

1− β
− Aααn+1

1− α
)

+
Aα(1− β)−Bβ(1− α)

(α− β)(1− α)(1− β)
.

On the other hand, the value of d2 can easily be calculated similar to d1. q.e.d.
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We note that the formula in the equation (3.19) generalizes the formula is given by Halici in [6],
which is for dual Fibonacci octonions;

n∑
i=1

Ôi = Ô2Fn+1 + Ô1Fn−1 − Ô2. (3.23)

Theorem 3.11. The norm of n-th dual Horadam octonion is

Nr(ÔGn) = (OGnOGn, OGnOGn+1 + OGn+1OGn) = (e1, e2) (3.24)

where e1, e2 and L are follows:

e1 =
A2α2n(1 + α2 + α4 + · · ·+ α14) +B2β2n(1 + β2 + β4 + · · ·+ β14)

(α− β)2
− L, (3.25)

e2 = 2(

7∑
i=0

wn+iwn+1+i) (3.26)

and

L =
2AB(−q)n(a+ (−q) + · · ·+ (−q)7)

p2 + 4q
(3.27)

where AB = b2 − abp− qa2.
Proof. It follows from the definition of norm that,

Nr(ÔGn) = (OGnOGn, OGnOGn+1 + OGn+1OGn).

To get the desired results we first calculate e1 as follows:

e1 =
A2α2n(1 + α2 + α4 + · · ·+ α14)

(α− β)2
+

B2β2n(1 + β2 + β4 + · · ·+ β14)

(α− β)2
− 2AB(−q)n(a+ (−q) + · · ·+ (−q)7)

(α− β)2
. (3.28)

The dual part of the equation (3.24) can easily be calculated because of the property ε2 = 0. After
direct calculations, the following relation is obtained.

e2 = OGnOGn+1 + OGn+1OGn = 2
( 7∑

i=0

wn+iwn+1+i

)
. (3.29)

q.e.d.

Norm values of dual Fibonacci and Lucas octonions are studied in [6,13]. Utilizing the equation
(3.24) together with the appropriate initial values one can get the following equation which is
identical to the norm of dual Fibonacci octonions is given in [6]

Nr(Ôn) = 21(F2n+7 + 2F2n+8ε). (3.30)

In order to see that 3.24 contains real Horadam quaternions (see [7]) one can calculate the α, β
and use real part of the equation.
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4 Conclusion

This paper generalizes similar papers in this area up to now on dual quaternions and octonions.
Thanks to this generalization the important properties concerning all the dual octonions such as
the Binet formula, the generating function, the Cassini, d’Ocagne’s and Vadja identities can be
easily obtained.
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